Indian Statistical Institute, Bangalore

B. Math. First Year, Second Semester Analysis -II Final Examination Date : May 7, 2009

Maximum marks: 100

Time: 3 hours

[15]

1. Show that if f_1 and f_2 are Riemann integrable bounded real valued functions on [a, b], then $f_1 + f_2$ is also Riemann integrable and

$$\int_{a}^{b} (f_1 + f_2)(x) dx = \int_{a}^{b} f_1(x) dx + \int_{a}^{b} f_2(x) dx.$$
[10]

- 2. Show that a real valued continuous function on [a, b] is Riemann integrable. [15]
- 3. Show that

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [0,1]\},\$$

defines a metric on the space $C_{\mathbb{R}}[0,1]$ of continuous real valued functions on [0,1]. Show that $(C_{\mathbb{R}}[0,1],d)$ is a complete metric space. Show that it is not compact. [20]

- 4. Let (X, d) be a compact metric space. Show that a subset K of X is compact if and only if it is closed in X. [15]
- 5. Let f and g be differentiable real valued functions on \mathbb{R}^n . Show that $M : \mathbb{R}^n \to \mathbb{R}$ defined by M(x) = f(x)g(x) is differentiable and

$$\nabla M(x) = f(x)\nabla g(x) + g(x)\nabla f(x)$$

(Here ∇ denotes the gradient vector, $\nabla f(x) = (D_1 f(x), \dots, D_n f(x)).$ [20]

6. Compute the directional derivative in the direction u = (3, 4) at the point c = (0, 0) for the function $m : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$m(x,y) = \begin{cases} 2xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases},$$

if it exists. Show that $D_{1,2}m(c) \neq D_{2,1}m(c)$.

7. Determine as to whether the origin c = (0,0) is a local minima/maxima or a saddle point for the following functions defined on \mathbb{R}^2 (Prove your claims).

(i)
$$g_1(x,y) = xy$$
; (ii) $g_2(x,y) = y^2 + 2x^4 + y^4$; (iii) $g_3(x,y) = y^2 - x^3$. [15]